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Summary 
Glass transition has been investigated as a freezing-in 

process by using a simple form of the Gibbs free energy with 
two order parameters. Two cases are examined: that of a single 
freezing-in line (transition line) and that involving two 
different lines on which the individual order parameter freeze- 
in gradually. The latter case is a simple, but adequate de- 
scription of the diffusivity of glass transition. The effect 
is discussed of the mutual position of freezing-in lines and 
of the Prigogine-Defay ratio on the dependence of the behav- 
iour of material on the thermodynamic history of glass tran- 
sition. 
Introduction 

Glass transition depends on the velocity of changes in 
thermodynamic variables, i.e. temperature T or pressure P. 
A study of the extreme cases of velocity of these changes is 
useful. A freezing-in model based on the description of glass 
transition by means of order parameters (DAVIES and JONES 
1953a) approximates very fast changes in which time effects 
can be neglected. Freezing-in of the order parameters is 
related to j~nps of those quantities which are directly con- 
nected with the second derivatives of the Gibbs free energy, 
i.e. with the jump in the isobaric heat capacity, ACp, in the 
coefficient of the volume temperature expansion As, and in iso- 
thermal compressibility AS. These coefficients allow us to 
construct the Prigogine-Defay ratio 

= ACpA~/TV (A~) 2 (I) 

(V being the volume) which for the second-order phase tran- 
sitions is always unity. For glass transition, however, the 
experiment suggests that z>1 (DAVIES and JONES 1953b, O'REILLY 
1962, GUPTA and MOYNIHAN 1976). Most authors (DAVIES and JONES 
1953a, GOLDSTEIN 1975, GUPTA and MOYNIHAN 1976, ROE 1977, BERG 
and COOPER 1978)agree that experimental findings just mentioned 
and theory are not at variance, if one admits that in the 
liquid-glass transition more than one order parameter freeze- 
in. On the other hand, however, DIMARZIO (1974, 1977a,b) proves 
that, if the experiment shows ~I, the freezing-in concept of 
order parameters cannot be applied to the given material. 

Now it seems useful to discuss the concrete form of the 
dependence of the Gibbs free energy on order parameters, 
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temperature and pressure. The form of the Gibbs free energy 
suggested by GOLDSTEIN (1980) though it adequately describes, in 
the most general features, the difference Detween the second- 
order phase transtion and glass transition, do not, however, 
explain why ~>I. A certain limitaion of the theory also con- 
sists in that the author leaves unnoticed pressure dependences. 

Our approach is a phenomenological one, being the continu- 
ation of a study by GOLDSTEIN (1980). We attempt to demonstrate 
that the analytically very simple form of the Gibbs free energy 
may adequately describe the essential properties of glass tran- 
sition, at least in the close vicinity of a certain point or 
region where the liquid becomes glass, A view forwarded by ROE 
(1977) that the diffusivity of glass transition is a conse- 
quence of the gradual freezing-in of the individual order para- 
meters, is also dealt with in some detail. 

Theory 

Basic relations 

The Gibbs free energy of a glass-forming system suggested 
by GOLDSTEIN (1980) is generalized to a form containing two 
order parameters ql and ~2 

G = G + E (Ai~ i + Biq~/2) (2) 
o i=i, 2 

Let it be assumed, for the sake of simplicity, that only coef- 
ficients A i are temperature- and pressure-dependent, while B i 
are nonzero constants. In the state of thermodynamic equi- 
librium, 

(~G/~qi)T, p = 0 i = 1,2 (3) 

so that the equilibrium values of order parameters (i.e. in the 
liquid) become 

e 
qi = -Ai(T'P)/Bi i = 1,2 (4) 

Let it also be assumed that in the liquid-glass transition, 
a freezing-in line exists for each order parameter 

T = fi (p) i = 1,2 (5) 

on which for the order parameters we have 

e g(p) (6) 
qi[fi (p)'p] = ~i 

In agreement with the freezing-in model, for T~f~ (P) the order 
parameters are constant (frozen-in). Let the parameter ni 
freeze-in in the point [Toi , Poi] which satisfies (5); then in 
this point, according to (4) and (6), 

= g(Poi ) (7) -Ai(Toi' Poi)/Bi qi 

If A i is expanded into a series as a function of T,P in the 
vicinity of the point [Toi, Poi], we obtain in the first 
approximation 
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g 
-Ai(T,P;Toi,Poi) = Bi~i(Poi) + ai(T - Toi) - bi(P - Poi ) (8) 

where a., b. are regarded as constants. Using Eqs (4), (6) and 
(8), itlmaylbe written for lines (5) in the first approximation 
that 

- Toi) = [Bi(~n~/~P)p= p ~  + bi] (P - Poi ) (9) ai(T 
oi 

These assuptions allow us to investigate the behaviour of the 
model of glass-forming material in the vicinity of the point 

[Toi , Poi ] (i=1,2). 

Liquid-glass transition 

First, let it be assumed that both order parameters freeze- 
in on the same line (fl = f2 = f) and that the liquid is trans- 
formed into glass in the point T O = f(Po)- For the volume and 
entropy near the point [To, Po], 

VL(T,P) = Vg(T,P) - [(T-To)~aibi/B i - (P-Po)~b~/Bi] (10) 

SL(T,P) = Sg(T,P) - [(T-To)Za~/B i - (P-Po) Zaibi/Bi] (11) 

where the indices "L" and "g" denote the liquid and glass 
respectively. Eqs (10) and (11) show that in the point [To,Po] 
the quantities appearing in the Prigogine-Defay ratio (111) 
assume the values 

Cp : Ea~/BiT O Ae = VoZaibi/B i A8 : VoZb~/B i (12) 

where V o = VL(To,Po) = Vg(To,Po). It is easy to see that if, 
and only if 

alb 2 ~ a2b I (13) 

we have ~(To,Po)>1. If (13) is satisfied, the lines V L - Vg = 0 
and S L - Sg = 0 in the T,P plot do not coincide, in agreement 
with the results obtained by GUPTA and MOYNIHAN (1976). 

Let us now examine a case which, it seems, is closer to 
reality, where the freezing-in lines of various order par- 
ameters do not coincide, and let us assume that f1(P)>f2(P) 
within the whole range of accessible pressures. In the liquid- 
glass transition the path of the system states first crosses 
the line fl in the point [Tol, Pol] where nl freezes-in, and 
partially frozen-in glass is formed. Only after f2 has been 
crossed in the point [To2, Po2] the whole system freezes-in. It 
is easy to demonstrate that in points [Tol, Pol] and [To2 , Po2] 
the corresponding ~'s are unity. The two-parameter model is 
regarded as a simplified model of the diffuse transition, in 
which in fact many parameters may gradually become frozen-in. 
In the experimentally investigated diffuse transition, no jump 
of Cp, e and 8 occurs in any of the points; if an extrapolated 
jump is mentioned, such as that of Cp, for instance, then what 
is meant is the difference between the Cp value in the point at 
the onset of transition and the Cp value in the point at the 
end of it (which similarly holds for the other quantities). 
Under such circumstances, the Prigogine-Defay ratio cannot be 
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used as stated in the Introduction, because this ratio has 
been defined for a point transition. Let therefore the 
Prigogine-Defay ratio for the diffuse transition be general- 
ized by 

~d = A (Cp/T) AS/(Am) 2 (14) 

where 

A(Cp/T) = (~SL/ST) - (SSg/~T) (15) 

SL and Sg respectively are the specific entropies of liquid and 
glass, and the temperature derivatives are taken in the points 
where the isobar crosses the line fl, f2 respectively, de and 
A~ are defined similarly. In our case we have 

~d = (Za~/Bi) (Zb~/Bi) / (Zaibi/Bi)2 (16) 

It can be seen that, similarly to the case of a single tran- 
sition line, also ~ >I then and only then, if (13) is valid. 
Generally, H a may d~pend on the chosen isobaric and isothermal 
paths. To avoid ambiguity, a certain convention must be agreed 
upon (e.g., that both paths pass through the point [Tol, Po2])- 

Glass-liquid transition 

Let it be assumed that if the glass-liquid transition 
proceeds along the same path as the formation of glass from 
the liquid, the freezing-in parameters defreeze in the same 
points in which they froze-in during the glass formation. If 
the glass-liquid transition proceeds along a different path, 
the dependence of the system on its thermodynamic history may 
come into play. Studies published so far (GOLDSTEIN 1976, 
HAVL~CEK 1981) have been based on the hypothesis (A): the order 
parameters defreeze on the lines fi(P) irrespective of con- 
ditions under which they froze-in. The model just mentioned 
allows us to analyze another extreme hypothesis (B): the order 
parameters defreeze on lines ~(T,P) - ~(Poi ) = 0. Let us now 

examine consequences reached by applying the hypotheses (A) and 
(B) to the model described above, if the system passes, e.g., 
along the following path: glass was formed by isobaric cooling 
at Po, in the glass state the pressure was changed to P', and 
at the latter pressure transition back to the liquid was 
effected by isobaric heating. We shall examine the behaviour 
of the system during the transition from glass to liquid at P'. 

Let it first be taken that fl = f2 = f- ~ = I holds for 
the system, then the lines given by equations 

V L - Vg = 0 (17) 

S L - Sg = 0 (18) 

e g(po ) = 0 (19) ~i(T,P) - H i 

coincide with each other, and it can be demonstrated that they 
are identical with the line f(P). The order parameters assume 
a constant value along the line f(P); the paths from the liquid 
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Fig.1 Schematically represented dependences of the 
system on thermodynamic history 
(a) Temperature and pressure r4gime. Designation of 
lines: I: ~?(T,P) - ~(To,Po) = 0, 2: V L - Vg = 0, 

e 
3: T = f(P), 4: ~2(T,P) - ~(To,Po) = 0 

(b) Behaviour of the volume according to the 
hypothesis (A) 
(c) Behaviour of the volume according to the 
hypothesis (B) 
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into glass and vice versa do not differ, irrespective of the 
chosen path, and the system is independent of its thermo- 
dynamic history. If, however, ~>I, the lines given by Eqs (17)- 
(19) differ from each other. The use of hypothesis (A) leads to 
a prediction of discontinuities in the volume and entropy 
(cf. GOLDSTEIN 1976, HAVL~CEK 1981). The hypothesis (B) does 
not predict any jumps, both the volume and entropy vary con- 
tinuously and monotonically, and material, when heated, passes 
through the state of partly frozen-in glass when only one order 
parameter is frozen-in. Both these possibilities are sche- 
matically illustrated by Fig.1. 

If the lines T = fi(P) are different, but parallel to each 
other, the situation is similar. At ~d = I the lines given by 
Eq. (19) coincide with the lines fi and the system is indepen- 
dent of thermodynamic history. If ~d>1, at least one of the 
lines given by Eq. (19) has a slope different from that of fi, 
and either the hypothesis (A) or (B) may be applied to the 
system. According to the hypothesis (A), a jump in the volume 
and entropy occurs on that line fi which differs from the 
respective line given by Eq. (19). The hypothesis (B) leads 
to the prediction of a continuous and monotonic transition of 
glass into liquid through the state of partly frozen glass. At 
the same time, both the volume and entropy of partly frozen 
glass and the discontinuities (if any) depend on the thermo- 
dynamic history of the system. 

If the lines fi are not parallel, but alb 2 = a2b 1, then 
according to inequality (13) is ~d = I; in spite of this, how- 
ever, according to the hypothesis (A) jumps occur in the ~olume 
and entropy, and in any case material depends on the thermo- 
dynamic history in the glass-liquid transition. A case may also 
arise, however, where ~d>1 and the lines given by Eq. (19) 
coincide with the corresponding fi- Then both hypotheses 
represent the same, and the system is independent of thermo- 
dynamic history, because according to Eq. (9), lines given by 
Eq. (19) are lines of constant ~ irrespective of the points 
of transition. 

It can be said, in conclusion, that assuming the existence 
of a sing{e line of the glass-liquid transition, Our model of 
such transition is in accordance with the results obtained 
earlier (DAVIES and JONES 1953a, GUPTA and MOYNIHAN 1976, 
GOLDSTEIN 1975, ROE 1977, BERG and COOPER 1978). Although in 
this case the liquid-glass transition is "sharp", we indicate 
the possibility of a diffuse character of the glass-liquid 
transition, if the latter proceeds along a path different from 
that of glass formation. 

It seems more realistic to assume that the order para- 
meters freeze-in gradually. Such a gradual freezing-in models 
the diffusi%~ty of glass transition. Under such circumstances, 
the Prigogine-Defay ratio should be defined in a more general 
manner, and the quantities ACp, de and A8 should not be related 
to a single point, but to values at the beginning and end of 
the transition. 
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